2017年高考数学知识方法专题6《立体几何与空间向量第27练 完美破解立体几何的证明问题》

出处:老师板报网 时间:2023-02-17

2017年高考数学知识方法专题6《立体几何与空间向量第27练 完美破解立体几何的证明问题》1

2017年高考数学知识方法专题6《立体几何与空间向量第27练 完美破解立体几何的证明问题》2

2017年高考数学知识方法专题6《立体几何与空间向量第27练 完美破解立体几何的证明问题》3

2017年高考数学知识方法专题6《立体几何与空间向量第27练 完美破解立体几何的证明问题》4

2017年高考数学知识方法专题6《立体几何与空间向量第27练 完美破解立体几何的证明问题》5

2017年高考数学知识方法专题6《立体几何与空间向量第27练 完美破解立体几何的证明问题》6

2017年高考数学知识方法专题6《立体几何与空间向量第27练 完美破解立体几何的证明问题》7

2017年高考数学知识方法专题6《立体几何与空间向量第27练 完美破解立体几何的证明问题》8

2017年高考数学知识方法专题6《立体几何与空间向量第27练 完美破解立体几何的证明问题》9

2017年高考数学知识方法专题6《立体几何与空间向量第27练 完美破解立体几何的证明问题》10

试读已结束,还剩13页未读,您可下载完整版后进行离线阅读

《2017年高考数学知识方法专题6《立体几何与空间向量第27练 完美破解立体几何的证明问题》》是由用户上传到老师板报网,本为文库资料,大小为1.27 MB,总共有23页,格式为doc。授权方式为VIP用户下载,成为老师板报网VIP用户马上下载此课件。文件完整,下载后可编辑修改。

  • 文库资料
  • 23页
  • 1.27 MB
  • VIP模板
  • doc
  • 数字产品不支持退货
单价:4.99 会员免费
第27练 完美破解立体几何的证明问题[题型分析·高考展望] 立体几何证明题是高考必考题,证明平行、垂直关系是主要题型,特别是垂直关系尤为重要.掌握判定定理、性质定理并能灵活运用是解题的根本.学会分析推理的方法和证明技巧是提升推理能力的关键,在二轮复习中,通过专题训练,使解立体几何证明的能力更上一层楼,确保该类题型不失分.体验高考1.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的(  )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 B解析 m垂直于平面α,当l⊂α时,也满足l⊥m,但直线l与平面α不平行,∴充分性不成立,反之,l∥α,一定有l⊥m,必要性成立.故选B.2.(2016·山东)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析 若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交,故选A.3.(2016·课标全国甲)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.(1)证明:AC⊥HD′;(2)若AB=5,AC=6,AE=,OD′=2,求五棱锥D′-ABCFE的体积.(1)证明 由已知得AC⊥BD,AD=CD,又由AE=CF得=,故AC∥EF,由此得EF⊥HD,折后EF与HD保持垂直关系,即EF⊥HD′,所以AC⊥HD′.(2)解 由EF∥AC得==.由AB=5,AC=6得DO=BO==4,所以OH=1,D′H=DH=3,于是OD′2+OH2=(2)2+12=9=D′H2,故OD′⊥OH.由(1)知AC⊥HD′,又AC⊥BD,BD∩HD′=H,所以AC⊥平面BHD′,于是AC⊥OD′,又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC.又由=得EF=.五边形ABCFE的面积S=×6×8-××3=.所以五棱锥D′-ABCFE的体积V=××2=.4.(2016·四川)如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(2)证明:平面PAB⊥平面PBD.(1)解 取棱AD的中点M(M∈平面PAD),点M即为所求的一个点,理由如下:因为AD∥BC,BC=AD,所以BC∥AM,且BC=AM.所以四边形AMCB是平行四边形,所以CM∥AB.又AB⊂平面PAB,CM⊄平面PAB.所以CM∥平面PAB.(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)(2)证明 由已知,PA⊥AB,PA⊥CD.因为AD∥BC,BC=AD,所以直线AB与CD相交,所以PA⊥平面ABCD,所以PA⊥BD.因为AD∥BC,BC=AD,M为AD的中点,连接BM,所以BC∥MD,且BC=MD.所以四边形BCDM是平行四边形,所以BM=CD=AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面PAB.又BD⊂平面PBD,所以平面PAB⊥平面PBD.5.(2016·课标全国丙)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求四面体NBCM的体积.(1)证明 由已知得AM=AD=2.如图,取BP的中点T,连接AT,TN,由N为PC中点知TN∥BC,TN=BC=2.又AD∥BC,故TN綊AM,所以四边形AMNT为平行四边形,于是MN∥AT.因为AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(2)解 因为PA⊥平面ABCD,N为PC的中点,所以N到平面ABCD的距离为PA.如图,取BC的中点E,连接AE.由AB=AC=3得AE⊥BC,AE==.由AM∥BC得M到BC的距离为,故S△BCM=×4×=2.所以四面体NBCM的体积VNBCM=×S△BCM×=.高考必会题型题型一 空间中的平行问题例1 如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.证明 (1)如图,连接SB,∵E、G分别是BC、SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴直线EG∥平面BDD1B1.(2)连接SD,∵F、G分别是DC、SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴FG∥平面BDD1B1,由(1)知,EG∥平面BDD1B1,且EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.点评 证明平行关系的方法(1)证明线线平行的常用方法:①利用平行公理,即证明两直线同时和第三条直线平行;②利用平行四边形进行转换;③利用三角形中位线定理证明;④利用线面平行、面面平行的性质定理证明.(2)证明线面平行的常用方法:①利用线面平行的判定定理,把证明线面平行转化为证明线线平行;②利用面面平行的性质定理,把证明线面平行转化为证明面面平行.(3)证明面面平行的方法:证明面面平行,依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行.变式训练1 (2015·天津改编)如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2,AA1=,BB1=2,点E和F分别为BC和A1C的中点.求证:(1)EF∥平面A1B1BA;(2)平面AEA1⊥平面BCB1.证明 (1)如图,连接A1B,在△A1BC中,因为E和F分别是BC和A1C的中点,所以EF∥BA1.又因为EF⊄平面A1B1BA,BA1⊂平面A1B1BA,所以EF∥平面A1B1BA.(2)因为AB=AC,E为BC中点,所以AE⊥BC,因为AA1⊥平面ABC,BB1∥AA1,所以BB1⊥平面ABC,从而BB1⊥AE.又因为BC∩BB1=B,所以AE⊥平面BCB1,又因为AE⊂平面AEA1,所以平面AEA1⊥平面BCB1.题型二 空间中的垂直问题例2 如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.证明 (1)如图,取CE的中点G,连接FG,BG.∵F为CD的中点,∴GF∥DE且GF=DE.∵AB⊥平面ACD,DE⊥平面ACD,∴AB∥DE,∴GF∥AB.又AB=DE,∴GF=AB.∴四边形GFAB为平行四边形,∴AF∥BG.∵AF⊄平面BCE,BG⊂平面BCE,∴AF∥平面BCE.(2)∵△ACD为等边三角形,F为CD的中点,∴AF⊥CD.∵DE⊥平面ACD,AF⊂平面ACD,∴DE⊥AF.又CD∩DE=D,故AF⊥平面CDE.∵BG∥AF,∴BG⊥平面CDE.∵BG⊂平面BCE,∴平面BCE⊥平面CDE.点评 (1)证明线面垂直的常用方法:①利用线面垂直的判定定理,把线面垂直的判定转化为证明线线垂直;②利用面面垂直的性质定理,把证明线面垂直转化为证明面面垂直;③利用常见结论,如两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)证明面面垂直的方法:证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线则借助中点、高线或添加辅助线来解决.变式训练2 (2016·北京)如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.(1)证明 ∵PC⊥平面ABCD,DC⊂平面ABCD,∴PC⊥DC.又AC⊥DC,PC∩AC=C,PC⊂平面PAC,AC⊂平面PAC,∴DC⊥平面PAC.(2)证明 ∵AB∥CD,CD⊥平面PAC,∴AB⊥平面PAC,又∵AB⊂平面PAB,∴平面PAB⊥平面PAC.(3)解 棱PB上存在点F,使得PA∥平面CEF.证明如下:取PB的中点F,连接EF,CE,CF,又∵E为AB的中点,∴EF为△PAB的中位线,∴EF∥PA.又PA⊄平面CEF,EF⊂平面CEF,∴PA∥平面CEF.题型三 空间中的平行、垂直综合问题例3 (2015·山东)如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.证明 (1)方法一 如图,连接DG,设CD∩GF=M,连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点,又H为BC的中点,所以HM∥BD,又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.方法二 在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,AB∩BE=B,所以平面FGH∥平面ABED.又因为BD⊂平面ABED,所以BD∥平面FGH.(2)连接HE,因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF∥HE.又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.点评 (1)立体几何中,要证线垂直于线,常常先证线垂直于面,再用线垂直于面的性质易得线垂直于线.要证线平行于面,只需先证线平行于线,再用线平行于面的判定定理易得.(2)证明立体几何问题,要紧密结合图形,有时要利用平面几何的相关知识,因此需要多画出一些图形辅助使用.(3)平行关系往往用到三角形的中位线,垂直关系往往用到三角形的高线、中线.变式训练3 (2015·北京)如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥V-ABC的体积.(1)证明 因为O,M分别为AB,VA的中点,所以OM∥VB,又因为VB⊄平面MOC,所以VB∥平面MOC.(2)证明 因为AC=BC,O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,且OC⊂平面ABC,所以OC⊥平面VAB.又OC⊂平面MOC,所以平面MOC⊥平面VAB.(3)解 在等腰直角三角形ACB中,AC=BC=,所以AB=2,OC=1,所以等边三角形VAB的面积S△VAB=.又因为OC⊥平面VAB.所以VC-VAB=·OC·S△VAB=,又因为三棱锥V-ABC的体积与三棱锥C-VAB的体积相等,所以三棱锥V-ABC的体积为.高考题型精练1.(2016·浙江)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则(  )A.m∥lB.m∥nC.n⊥lD.m⊥n答案 C解析 由已知,α∩β=l,∴l⊂β,又∵n⊥β,∴n⊥l,C正确.故选C.2.(2015·安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是(  )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面答案 D解析 对于A,α,β垂直于同一平面,α,β关系不确定,故A错;对于B,m,n平行于同一平面,m,n关系不确定,可平行、相交、异面,故B错;对于C,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C错;对于D,若假设m,n垂直于同一平面则m∥n,其逆否命题即为D选项,故D正确.3.已知α,β是两个不同的平面,给出下列四个条件:①存在一条直线a,a⊥α,a⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α;④存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α,可以推出α∥β的是(  )A.①③B.②④C.①④D.②③答案 C解析 对于②,平面α与β还可以相交;对于③,当a∥b时,不一定能推出α∥β,所以②③是错误的,易知①④正确,故选C.4.如图,在正方形ABCD中,E,F分别是BC,CD的中点,AC∩EF=G.现在沿AE,EF,FA把这个正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,则在四面体P-AEF中必有(  )A.AP⊥△PEF所在平面B.AG⊥△PEF所在平面C.EP⊥△AEF所在平面D.PG⊥△AEF所在平面答案 A解析 在折叠过程中,AB⊥BE,AD⊥DF保持不变.∴⇒AP⊥平面PEF.5.如图所示,在正方体ABCD-A1B1C1D1中,M,N,P,Q分别是AA1,A1D1,CC1,BC的中点,给出以下四个结论:①A1C⊥MN;②A1C∥平面MNPQ;③A1C与PM相交;④NC与PM异面.其中不正确的结论是(  )A.①B.②C.③D.④答案 B解析 作出过M,N,P,Q四点的截面交C1D1于点S,交AB于点R,如图所示中的六边形MNSPQR,显然点A1,C分别位于这个平面的两侧,故A1C与平面MNPQ一定相交,不可能平行,故结论②不正确.6.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是(  )A.①③B.①④C.②③D.②④答案 B解析 ①中易知NP∥AA′,MN∥A′B,∴平面MNP∥平面AA′B可得出AB∥平面MNP(如图).④中,NP∥AB,能得出AB∥平面MNP.7.如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.答案 平行解析 连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.8.如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).答案 ①④解析 由PA⊥平面ABC,AE⊂平面ABC,得PA⊥AE,又由正六边形的性质得AE⊥AB,PA∩AB=A,得AE⊥平面PAB,又PB⊂平面PAB,∴AE⊥PB,①正确;∵平面PAD⊥平面ABC,∴平面ABC⊥平面PBC不成立,②错;由正六边形的性质得BC∥AD,又AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD,∴直线BC∥平面PAE也不成立,③错;在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,④正确.9.如图,三棱柱ABC—A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C,则B1C与AB的位置关系为________.答案 异面垂直解析 ∵AO⊥平面BB1C1C,∴AO⊥B1C,又∵平面BB1C1C为菱形,∴B1C⊥BO,∴B1C⊥平面ABO,∵AB⊂平面ABO,∴B1C⊥AB.10.(2016·课标全国甲)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)答案 ②③④解析 当m⊥n,m⊥α,n∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④.11.(2015·江苏)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明 (1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.12.(2016·山东)在如图所示的几何体中,D是AC的中点,EF∥DB.(1)已知AB=BC,AE=EC,求证:AC⊥FB;(2)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.证明 (1)因为EF∥DB,所以EF与DB确定平面BDEF,如图①,连接DE.因为AE=EC,D为AC的中点,所以DE⊥AC.同理可得BD⊥AC.又BD∩DE=D,所以AC⊥平面BDEF.因为FB⊂平面BDEF,所以AC⊥FB.(2)如图②,设FC的中点为I,连接GI,HI.在△CEF中,因为G是CE的中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC.又HI∩GI=I,所以平面GHI∥平面ABC,因为GH⊂平面GHI,所以GH∥平面ABC.
返回首页
X